Computing the lower and upper bounds of Laplace eigenvalue problem:by combining conforming and nonconforming finite element methods
Computing the lower and upper bounds of Laplace eigenvalue problem:by combining conforming and nonconforming finite element methods作者机构:LSECICMSECAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2012年第55卷第5期
页 面:1069-1082页
核心收录:
学科分类:07[理学] 08[工学] 080203[工学-机械设计及理论] 070102[理学-计算数学] 0802[工学-机械工程] 0701[理学-数学]
基 金:supported by National Science Foundations of China (Grant Nos. 11001259,11031006) Croucher Foundation of Hong Kong Baptist University
主 题:lower bound upper bound ECR EQ1ro t eigenvalue problem postprocessing
摘 要:We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue *** using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the lower bound of the ***,we use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue,which only needs to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is ***,we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only *** numerical results are also presented to demonstrate our theoretical analysis.