咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >SUPERCONVERGENCE ANALYSIS OF F... 收藏

SUPERCONVERGENCE ANALYSIS OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS OF THE STATIONARY B(?)NARD TYPE

SUPERCONVERGENCE ANALYSIS OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS OF THE STATIONARY B(?)NARD TYPE

作     者:Yanzhen Chang Danping Yang 

作者机构:School of Mathematics and System Science Shandong University Jinan 250100 China Department of Mathematics East China Normal University Shanghai 200062 China 

出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))

年 卷 期:2008年第26卷第5期

页      面:660-676页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:the Research Fund for Doctoral Program of High Education by China State Education Ministry under the Grant 2005042203 

主  题:Optimal control problem The stationary Benard problem Nonlinear coupled system Finite element approximation Superconvergence. 

摘      要:In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Benard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the superconvergence analysis for the control; it is proved that the approximation has a second-order rate of convergence. We further give the superconvergence analysis for the states and the co-states. Then we derive error estimates in L^∞-norm and optimal error estimates in L^2-norm.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分