Existence of Nonabelian Free Subgroups in the Maximal Subgroups of GLn(D)
Existence of Nonabelian Free Subgroups in the Maximal Subgroups of GLn(D)作者机构:Department of Mathematical Sciences Sharif University of 3bchnology P.O. Box 11155-3415 Tehran Iran
出 版 物:《Algebra Colloquium》 (代数集刊(英文版))
年 卷 期:2014年第21卷第3期
页 面:483-496页
核心收录:
学科分类:0832[工学-食品科学与工程(可授工学、农学学位)] 07[理学] 08[工学] 070104[理学-应用数学] 083201[工学-食品科学] 0701[理学-数学]
基 金:Research Council of Sharif University of Technology
主 题:free subgroup maximal subgroup central simple algebralotion
摘 要:Given a non-commutative finite dimensional F-central division algebra D, we study conditions under which every non-abelian maximal subgroup M of CLn (D) contains a non-cyclic free subgroup. In general, it is shown that either M contains a non-cyclic free subgroup or there exists a unique maximal subfield K of Mn(D) such that NCLn(D)(K*) = M, K* △ M, K/F is Galois with Gal(K/F) ≌ M/K*, and F[M] = in(D). In particular, when F is global or local, it is proved that if ([D : F], Char(F)) = 1, then every non- abelian maximal subgroup of GL1 (D) contains a non-cyclic free subgroup. Furthermore, it is also shown that GLn(F) contains no solvable maximal subgroups provided that F is local or global and n ≥ 5.