SPLITTING OF THE SPECTRAL DOMAIN ELECTRICAL DYADIC GREEN’S FUNCTION IN CHIRAL MEDIA
SPLITTING OF THE SPECTRAL DOMAIN ELECTRICAL DYADIC GREEN’S FUNCTION IN CHIRAL MEDIA作者机构:Department of Mathematics and Physics Dalian Maritime University Dalian 116026 P.R.China Department of Economics Fukuoka University Fukuoka 814-01 Japan
出 版 物:《Applied Mathematics and Mechanics(English Edition)》 (应用数学和力学(英文版))
年 卷 期:2005年第26卷第2期
页 面:195-199页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)]
基 金:theConstructionFoundationoftheCommunicationsMinistryofChina ( 752 1 4 7)
主 题:dyadic Green's function non-divergence component irrotational component electromagnetic wave field charge field chiral medium
摘 要:A new method of formulating dyadic (Green s) functions in lossless,reciprocal and unbounded chiral medium was *** on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic (Green s) function equation was first decomposed into the non-divergence electrical vector dyadic (Green s) function equation and irrotational electrical vector dyadic (Green s) function equation,and then (Fourier s) transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic (Green s) function in chiral *** can avoid having to use the wavefield decomposition method and dyadic (Green s) function eigenfunction expansion technique that this method is used to derive the dyadic (Green s) functions in chiral media.