On Word Equations Originated from Discrete Dynamical Systems Related to Antisymmetric Cubic Maps with Some Applications
On Word Equations Originated from Discrete Dynamical Systems Related to Antisymmetric Cubic Maps with Some Applications作者机构:The Academic Arab InstituteFaculty of EducationBeit Berl College
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2018年第34卷第11期
页 面:1663-1676页
核心收录:
学科分类:0711[理学-系统科学] 07[理学] 070104[理学-应用数学] 071101[理学-系统理论] 0701[理学-数学]
基 金:supported by Beit Berl College
主 题:Word equation broken alternating word primitive word greatest word parity-lexicographic order
摘 要:In this article, we solve some word equations originated from discrete dynamical systems related to antisymmetric cubic map. These equations emerge when we work with primitive and greatest words. In particular, we characterize all the cases for which (β1β1) = (β2β) where β1 and β2 are the greatest words in 〈〈β31〉〉 and 〈〈β32〉〉 of M(n).