Surface Waviness in Grinding of Thin Mould Insert Using Chilled Air as Coolant
Surface Waviness in Grinding of Thin Mould Insert Using Chilled Air as Coolant作者机构:School of MPE Nanyang Technological UniversityGintic Institute of Manufacturing Technology Singapore Singapore
出 版 物:《厦门大学学报(自然科学版)》 (Journal of Xiamen University:Natural Science)
年 卷 期:2002年第41卷第S1期
页 面:105-106页
核心收录:
学科分类:080503[工学-材料加工工程] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 080201[工学-机械制造及其自动化]
主 题:In Surface Waviness in Grinding of Thin Mould Insert Using Chilled Air as Coolant
摘 要:On going trend of miniaturization in electronic rel at ed parts, which is an average of two times in every 5~7 years introduce grindin g challenges. In grinding process, the surface waviness control of thin parts is an ardent task due to its warpage, induced by the high specific grinding energy (2~10 J/mm 3). Therefore, coolant is often used to avoid thermal damage, obtai n better surface integrity and to prolong wheel life. However coolant, the incomp ressibility media introduce high forces at the grinding zone creating dimensiona l as well as shape instability. In view of these situations chilled air was ap plied in place of conventional coolant. The chilled air is produced using a two -stage vapor compression refrigeration cycle with characteristics of: temperatu re -35 ℃, pressure 0.2~0.3 MPa and flow rate 0.4 m 3/min. Also traces of eco - oil mist that encompass the chilled air are supplied to the grinding zone. B oth chilled air and eco-oil mist are applied through two independent paths of a specially designed twin compartment nozzle for maximizing the penetration. This paper investigates the grinding characteristics of mold insert which is closer to M2 tool steel (component widely used in connector industries) when using chil led air as coolant media. Grinding experiments were conducted using a vitrified bond CBN wheel (B91N100V) and a surface grinder. Initial study was focussed on establishing the most suita ble clamping method for the thin mold insert. FEM analysis and grinding experime nt studies were performed to quantitatively analyze the clamping induced deflect ion. Waviness value (W t) of (24~62) μm was achieved for resin clampi n g whereas (4~8) μm, (4~6) μm were achieved for magnetic and wax clamping res pe ctively. Wax clamping is predominantly used in all the grinding experiments that characterize the grinding process, which use chilled air as the coolant media. Between 0.15 to 0.9 mm 3/mm.s of specific material removal rate, ground sur face tempe