Hitting Probabilities and the Hausdorff Dimension of the Inverse Images of a Class of Anisotropic Random Fields
Hitting Probabilities and the Hausdorff Dimension of the Inverse Images of a Class of Anisotropic Random Fields作者机构:School of Statistics and MathematicsZhejiang Gongshang University
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2015年第31卷第12期
页 面:1895-1922页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:Supported by National Natural Science Foundation of China(Grant No.11371321)
主 题:Anisotropic random field non-linear stochastic heat equations spatially homogeneous Gaussian noise hitting probabilities Hausdorff dimension inverse image
摘 要:Let X = {X(t):t ∈ R^N} be an anisotropic random field with values in R^*** certain conditions on X,we establish upper and lower bounds on the hitting probabilities of X in terms of respectively Hausdorff measure and Bessel-Riesz *** also obtain the Hausdorff dimension of its inverse image,and the Hausdorff and packing dimensions of its level *** results are applicable to non-linear solutions of stochastic heat equations driven by a white in time and spatially homogeneous Gaussian noise and anisotropic Guassian random fields.