咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Applying Methods from Differen... 收藏

Applying Methods from Differential Geometry to Devise Stable and Persistent Air Layers Attached to Objects Immersed in Water

Applying Methods from Differential Geometry to Devise Stable and Persistent Air Layers Attached to Objects Immersed in Water

作     者:Wilfried Konrad Christian Apeltauer Jrg Frauendiener Wilhelm Barthlott Anita Roth-Nebelsick 

作者机构:Institute for Geosciences University of Tubingen D-72016 Tubingen Germany Department of Mathematics and Statistics University of Otago Dunedin 9054 New Zealand Centre of Mathematics for Applications University of Oslo NO-0317 Oslo Norway Nees Institute for Biodiversity of Plants University of Bonn D-53115 Bonn Germany State Museum of Natural History Stuttgart Rosenstein 1 D-70191 Stuttgart Germany 

出 版 物:《Journal of Bionic Engineering》 (仿生工程学报(英文版))

年 卷 期:2009年第6卷第4期

页      面:350-356页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:funded by grants from the Deutsche Forschungsgemeinschaft the Bundesministerium für Bildung und Forschung and the Landesgraduiertenfrderungsgesetz des Landes Baden-Württemberg 

主  题:interfaces air layers differential geometry stability persistence Salvinia 

摘      要:We describe a few mathematical tools which allow to investigate whether air-water interfaces exist(under prescribed conditions)and are mechanically stable and temporally *** terms of physics,air-water interfaces are governed by the Young-Laplace *** they are surfaces of constant mean curvature which represent solutions of a nonlinear elliptic partial differential *** explicit solutions of this equation can be obtained only in very special cases,it is -under moderately special circumstances-possible to establish the existence of a solution without actually solving the differential *** also derive criteria for mechanical stability and temporal persistence of an air *** we calculate the lifetime of a non-persistent air ***,we apply these tools to two examples which exhibit the symmetries of 2D *** examples can be viewed as abstractions of the biological model represented by the aquatic fern Salvinia.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分