Anomalous Scaling of Surface Growth Equations with Spatially and Temporally Correlated Noise
Anomalous Scaling of Surface Growth Equations with Spatially and Temporally Correlated Noise作者机构:Department of Physics China University of Mining and Technology Xuzhou 221008 China
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2008年第50卷第7期
页 面:227-230页
核心收录:
学科分类:07[理学] 070201[理学-理论物理] 0704[理学-天文学] 0702[理学-物理学]
基 金:National Natural Science Foundation of China under Grant No.10674177
主 题:surface growth equation local slope fluctuations anomalous dynamic scaling
摘 要:Based on the scaling idea of local slopes by Lopez et al. [Phys. Rev. Lett. 94 (2005) 166103], we investigate anomalous dynamic scaling of (d + 1)-dimensional surface growth equations with spatially and temporally correlated noise. The growth equations studied include the Kardar-Parisi-Zhang (KPZ), Sun-Guo-Grant (SGG), and Lai-Das Sarma-Villain (LDV) equations. The anomalous scaling exponents in both the weak- and strong-coupling regions are obtained, respectively.