Detection of leaf structures in close-range hyperspectral images using morphological fusion
Detection of leaf structures in close-range hyperspectral images using morphological fusion作者机构:Department of Telecommunications and Information Processing Ghent University-imec Ghent Belgium Facultad de Ingeniería en Eléctrica y Computación ESPOL Polytechnic University Escuela Superior Politécnica del Litoral Guayaquil Ecuador
出 版 物:《Geo-Spatial Information Science》 (地球空间信息科学学报(英文))
年 卷 期:2017年第20卷第4期
页 面:325-332页
核心收录:
学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学]
基 金:supported by the Flemish Interuniversity Council (VLIR) the FWO project[Data fusion for image analysis in remote sensing]
主 题:Hyperspectral fusion morphology plant biology
摘 要:Close-range hyperspectral images are a promising source of information in plant biology,in particular,for in vivo study of physiological *** this study,we investigate how data fusion can improve the detection of leaf elements by combining pixel reflectance and morphological *** detection of image regions associated to the leaf structures is the first step toward quantitative analysis on the physical effects that genetic manipulation,disease infections,and environmental conditions have in *** tested our fusion approach on Musa acuminata (banana) leaf images and compared its discriminant capability to similar techniques used in remote *** results demonstrate the efficiency of our fusion approach,with significant improvements over some conventional methods.