On the Equation n1n2= n3n4 Restricted to Factor Closed Sets
On the Equation n1n2= n3n4 Restricted to Factor Closed Sets作者机构:School of Mathematics Hefei University of Technology Hefei 230009 P. R. China IRMA UMR 7501 7 rue Rend Descartes 67084 Strasbourg Cedex France
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2018年第34卷第10期
页 面:1517-1530页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by China Scholarship Council
主 题:Diophantine equation arithmetical functions factor closed set
摘 要:We study the number of solutions N(B,F) of the diophantine equation n1n2 = n3n4,where 1 ≤ n1≤B, 1≤ n3 ≤B, n2, n4 ∈ F and F C [1, B] is a factor closed set. We study more particularly the case when F = {m = p1^ε1…pk^εk ,εj∈ {0, 1}, 1≤ j ≤ k}, p1,… ,pk being distinct prime numbers.