咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Weak(quasi-)affine bi-frames f... 收藏

Weak(quasi-)affine bi-frames for reducing subspaces of L^2(R^d)

Weak(quasi-)affine bi-frames for reducing subspaces of L^2(R^d)

作     者:JIA HuiFang LI YunZhang 

作者机构:College of Applied Sciences Beijing University of Technology 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2015年第58卷第5期

页      面:1005-1022页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by National Natural Science Foundation of China(Grant No.11271037) Beijing Natural Science Foundation(Grant No.1122008) 

主  题:frame bi-frame weak affine bi-frame weak quasi-affine bi-frame 

摘      要:Since a frame for a Hilbert space must be a Bessel sequence, many results on(quasi-)affine bi-frame are established under the premise that the corresponding(quasi-)affine systems are Bessel sequences. However,it is very technical to construct a(quasi-)affine Bessel sequence. Motivated by this observation, in this paper we introduce the notion of weak(quasi-)affine bi-frame(W(Q)ABF) in a general reducing subspace for which the Bessel sequence hypothesis is not needed. We obtain a characterization of WABF, and prove the equivalence between WABF and WQABF under a mild condition. This characterization is used to recover some related known results in the literature.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分