LIL and the Approximation of Rectangular Sums of B-valued Random Variables when Extreme Terms are Excluded
LIL and the Approximation of Rectangular Sums of B-valued Random Variables when Extreme Terms are Excluded作者机构:Department of Mathematics Xixi Campus Zhejiang University Hangzhou P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2002年第18卷第3期
页 面:605-614页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:Supported by National Natural Science Foundation of China (No. 10071072)
主 题:Strong approximation Trimmed sums The law of iterated logarithm
摘 要:Let {X, X_; ∈N^d} be a field of i.i.d, random variables indexed by d-tuples of positive integers and taking values in a Banach space B and let X_^((r))=X_(m) if ‖X_‖ is the r-th maximum of {‖X_‖; ≤. Let S_=∑(≤)X_ and ^((r))S_=S_-(X_^((1))+…+X_^((r)). We approximate the trimmed sums ^((r))_n, by a Brownian sheet and obtain sufficient and necessary conditions for ^((r))S_ to satisfy the compact and functional laws of the iterated logarithm. These results improve the previous works by Morrow (1981), Li and Wu (1989) and Ledoux and Talagrand (1990).