The Numerical Comparison of Heat Transfer in a Coated and Fixed Bed of an Adsorption Chiller
The Numerical Comparison of Heat Transfer in a Coated and Fixed Bed of an Adsorption Chiller作者机构:Faculty of Mathematics and Natural Science Jan Dlugosz University Faculty of Energy and Fuels AGH University of Science and Technology
出 版 物:《Journal of Thermal Science》 (热科学学报(英文版))
年 卷 期:2018年第27卷第5期
页 面:421-426页
核心收录:
学科分类:080705[工学-制冷及低温工程] 080701[工学-工程热物理] 08[工学] 0807[工学-动力工程及工程热物理]
基 金:the project:"The development of innovative technology of adsorption chiller NETI?,using special,glued construction of the adsorption beds"(number:POIR.01.01.01-00-1659/15) partially supported by National Science Centre of Poland (Narodowe Centrum Nauki) grant number 2017/01/X/ST8/00019 granted by the Faculty of Mathematics and Natural Sciences of Jan Dlugosz University in Czestochowa
主 题:adsorption chiller computational fluid dynamics low grade thermal energy sources coated adsorption bed silica gel thermal conductivity
摘 要:Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development concept of the global economy. Therefore, research aiming at improving their performance i.e. Coefficient of Performance(COP) by optimizing the construction of sorption beds with a built in heat exchanger system is crucial. The heat transfer characteristics between the bed of porous media(sorbent) and surface of the heat exchanger system determine the heating power of an adsorption chiller. The HP increase can be obtained by heat transfer intensification due to the increase in the thermal conductivity of the sorbent layer in the vicinity of the heat exchanger s surface. The novel modification of the sorbent layer structure is proposed in the paper in order to improve the heat transfer processes in the heat exchanger boundary layer. The analysis of desorption process conditions in the parametric model of a coated and fixed adsorption bed design is presented in the paper. The computational fluid dynamics(CFD) with conjugate heat transfer analysis is used to determine the crucial input parameters(temperature distribution in the sorbent bed) for further analytical calculations. The commercial code Ansys Fluent was used to perform numerical simulations. The developed computational model consisted of three subdomains representing heating water, heat exchanger material(copper) and sorbent(silica gel). The comparison of a novel coated design and a conventional fixed bed is discussed in the paper. The numerical analysis is based on experimental thermal conductivity measurements of the sorbent layer in different configurations, which were performed using Laser Flash Method.