Hausdorff dimension of quasi-cirles of polygonal mappings and its applications
Hausdorff dimension of quasi-cirles of polygonal mappings and its applications作者机构:LMAM and School of Mathematical SciencesPeking University School of Mathematics and Computer ScienceGuizhou Normal University
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2013年第56卷第5期
页 面:1033-1040页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(Grant Nos.10831004 and 11171080)
主 题:Hausdorff dimension Teichmiiller space quasi-circle polygonal mapping
摘 要:We show that the Hausdorff dimension of quasi-circles of polygonal mappings is one. Furthermore, we apply this result to the theory of extremal quasiconformal mappings. Let [μ] be a point in the universal Teichmiiller space such that the Hausdorff dimension of fμ(δ△) is bigger than one. We show that for every kn ∈ (0, 1) and polygonal differentials δn, n = 1, 2, the sequence {[kn δn/|δn|} cannot converge to [μ] under the Teichmiiller metric.