Operators' ordering: from Weyl ordering to normal ordering
Operators’ ordering: from Weyl ordering to normal ordering作者机构:Department of Physics Shanghai Jiao Tong University Shanghai 200030 China College of Music Wenzhou University Wenzhou 325035 China CoUege of Physics and Electric Information Wenzhou University Wenzhou 325035 China
出 版 物:《Science China(Physics,Mechanics & Astronomy)》 (中国科学:物理学、力学、天文学(英文版))
年 卷 期:2011年第54卷第8期
页 面:1394-1397页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 080202[工学-机械电子工程] 08[工学] 0802[工学-机械工程]
基 金:supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10947017/A05) the Specialized Research Fund for the Doctorial Progress of Higher Education of China (GrantNo. 20070358009)
主 题:Weyl ordering normal ordering Wigner operator Weyl rule
摘 要:By virtue of the technique of integration within an ordered product of operators we present a new approach to obtain operators normal ordering. We first put operators into their Weyl ordering through the Weyl-Wigner quantization scheme, and then we convert the Weyl ordered operators into normal ordering by virtue of the normally ordered form of the Wigner operator.