咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >MAXIMAL ATTRACTORS FOR THE COM... 收藏

MAXIMAL ATTRACTORS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS OF VISCOUS AND HEAT CONDUCTIVE FLUID

MAXIMAL ATTRACTORS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS OF VISCOUS AND HEAT CONDUCTIVE FLUID

作     者:秦玉明 宋锦萍 

作者机构:Department of Applied MathematicsDonghua University Department of MathematicsCollege of Mathematics and Information ScienceHenan University 

出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))

年 卷 期:2010年第30卷第1期

页      面:289-311页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported in part by the NSF of China (10571024,10871040) the grant of Prominent Youth of Henan Province of China (0412000100) 

主  题:compressible Navier Stokes equations polytropic viscous ideal gas spheri-cally symmetric solutions absorbing set maximal attractor 

摘      要:This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分