基于雷达辐射源信号特征的类别信息辅助GM-PHD滤波器
Classification-aided GM-PHD filter based on signal feature of radar emitter作者机构:国防科学技术大学电子科学与工程学院湖南长沙410073
出 版 物:《系统工程与电子技术》 (Systems Engineering and Electronics)
年 卷 期:2015年第37卷第6期
页 面:1273-1279页
核心收录:
学科分类:0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 081203[工学-计算机应用技术] 08[工学] 0802[工学-机械工程] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:多目标跟踪 高斯混合概率假设密度滤波器 雷达辐射源信号 可传递信度模型
摘 要:雷达辐射源目标跟踪在军事应用领域具有重要的意义。结合目标类别信息有助于提高高斯混合概率假设密度(Gaussian mixture-probability hypothesis density,GM-PHD)滤波器多目标跟踪的性能,但电子侦察系统获得的雷达辐射源信号信息无法直接应用于上述滤波器。为此,先利用辐射源信号特征进行雷达类型识别,然后基于可传递信度模型根据雷达-平台的配属关系将该识别结果转换到与已知类别信息相同的辨识框架内。在此基础上,采用相容系数度量其相似度用以近似GM-PHD滤波器中的量测似然值,从而实现类别信息的辅助目标跟踪。仿真实验表明,在不同的杂波密度下所提方法能够有效提高GM-PHD滤波器的跟踪性能。