Convex Variational Formulation with Smooth Coupling for Multicomponent Signal Decomposition and Recovery
Convex Variational Formulation with Smooth Coupling for Multicomponent Signal Decomposition and Recovery作者机构:UPMC Universite Paris 06Laboratoire Jacques-Louis Lions-UMR 7598 and Equipe Combinatoire et Optimisation-UMR 7090 UPMC Universite Paris 06Laboratoire Jacques-Louis Lions-UMR 7598
出 版 物:《Numerical Mathematics(Theory,Methods and Applications)》 (高等学校计算数学学报(英文版))
年 卷 期:2009年第2卷第4期
页 面:485-508页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by the Agence Nationale de la Recherche under grant ANR-08-BLAN-0294-02
主 题:Convex optimization denoising image restoration proximal algorithm signal decom-position signal recovery
摘 要:A convex variational formulation is proposed to solve multicomponent signal processing problems in Hilbert *** cost function consists of a separable term, in which each component is modeled through its own potential,and of a coupling term, in which constraints on linear transformations of the components are penalized with smooth *** algorithm with guaranteed weak convergence to a solution to the problem is *** multicomponent signal decomposition and recovery applications are discussed.