表面肌电信息融合与动作分类
Surface Myoelectric Signal Information Fusion and Motion Classification作者机构:上海交通大学生物医学工程系上海200030
出 版 物:《数据采集与处理》 (Journal of Data Acquisition and Processing)
年 卷 期:2005年第20卷第4期
页 面:390-393页
核心收录:
学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 08[工学] 0836[工学-生物工程]
摘 要:提出基于多个特征域信息融合的方法,进一步去除不确定性、提高表面肌电分类准确率。选择的表面肌电特征参数分别为时域绝对值积分、AR模型系数和线性倒谱系数。待辨识的6类手部动作肌电信号经各特征域变换,提取特征矢量后由BP神经网络分类,根据D-S证据理论对各分类器分类结果进行证据累积,并得到最终分类结果。实验结果表明,动作分类准确率高于传统的单特征集单分类器的分类方法,且训练、分类效率高于结构化神经网络特征融合方法。