咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Signal prediction based on emp... 收藏

Signal prediction based on empirical mode decomposition and artificial neural networks

Signal prediction based on empirical mode decomposition and artificial neural networks

作     者:Wang Yong Liu Yanping Yang Jing 

作者机构:School of Surveying & Land Information Engineering Henan Polytechnic University Jiaozuo 454000 China School of Civil Engineering Central South University Changsha 410075 China College of Mining Engineering Hebei United University Tangshan 063009 China 

出 版 物:《Geodesy and Geodynamics》 (大地测量与地球动力学(英文版))

年 卷 期:2012年第3卷第1期

页      面:52-56页

学科分类:0711[理学-系统科学] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supporteal by the Notional Natural Scince Foundation of Hebei Province(D201000921) 

主  题:EMD (Empirical Mode Decomposition) ANN (Artificial Neural Networks) MRME (Most Relevant Matching Extension) IMF (Intrinsic Mode Function) endpoint problem RBF (Radial Basis Function) 

摘      要:In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分