Correcting the Gutenberg–Richter b-value for effects of rounding and noise
Correcting the Gutenberg–Richter b-value for effects of rounding and noise作者机构:UNAM Campus Querétaro México Centro de GeocienciasBlvd.Juriquilla No 3001 76230 México Querétaro México Seismology Department CICESE Carretera Ensenada-Tijuana No 3918 Zona Playitas 22860 Ensenada BC México
出 版 物:《Earthquake Science》 (地震学报(英文版))
年 卷 期:2015年第28卷第2期
页 面:129-134页
核心收录:
学科分类:0709[理学-地质学] 0819[工学-矿业工程] 07[理学] 070801[理学-固体地球物理学] 0707[理学-海洋科学] 0818[工学-地质资源与地质工程] 0708[理学-地球物理学] 0815[工学-水利工程] 0816[工学-测绘科学与技术] 0813[工学-建筑学] 0825[工学-航空宇航科学与技术] 0704[理学-天文学] 0814[工学-土木工程]
基 金:partially funded by UNAMDGAPA postdoctoral scholarship(VH Márquez-Ramírez) CONACYT grant 222795 UNAM-DGAPA-PAPIIT grant IN108115
摘 要:The effects of magnitude rounding and of the presence of noise in the rounded magnitudes on the estimation of the Gutenberg-Richter b-value are explored, and the ways to correct for these effects are proposed. For typical values, b = 1 and rounding interval △M = 0.1, the rounding error is approximately -10^-3 and it can be corrected to a negligible approximately -10^-5. For the same typical values, the effect of noise can be larger, depending on the characteristics of the noise distribution; for normally distributed noise with standard deviation σ = 0.1, the correct b-value may be underestimated by a factor - 0.97.