On Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces
On Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces作者机构:Department of Mathematics University of Washington Seattle WA 98195 USA and Beijing Institute of Technology Beijing 100081 P. R. China Department of Mathematics and Research Institute of Mathematics Seoul National University Seoul 151-742 South Korea Department of Mathematics Faculty of Science Kyoto University Kyoto 606-8502 Japan
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2009年第25卷第7期
页 面:1067-1086页
核心收录:
学科分类:07[理学] 08[工学] 070104[理学-应用数学] 0803[工学-光学工程] 0701[理学-数学]
基 金:supported by NSF (Grant No. DMS-0600206) supported by the Korea Science Engineering Foundation (KOSEF) Grant funded by the Korea government (MEST) (No. R01-2008-000-20010-0) supported by the Grant-in-Aid for Scientific Research (B) 18340027
主 题:Dirichlet form jump process jumping kernel parabolic Harnack inequality heat kernel estimates
摘 要:In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality.