咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Modeling and simulation of the... 收藏

Modeling and simulation of the spread of H1N1 flu with periodic vaccination

Modeling and simulation of the spread of H1N1 flu with periodic vaccination

作     者:Islam A. Moneim 

作者机构:Department of Scientific Computing Faculty of Computers and InformaticsBenha University P. O. Box 13518 Benha Egypt 

出 版 物:《International Journal of Biomathematics》 (生物数学学报(英文版))

年 卷 期:2016年第9卷第1期

页      面:47-63页

核心收录:

学科分类:090603[农学-临床兽医学] 08[工学] 080203[工学-机械设计及理论] 09[农学] 0906[农学-兽医学] 0802[工学-机械工程] 

基  金:research Deanship Qassim University KSA 

主  题:Mathematical modeling disease control periodic vaccination rate basicreproduction number R0 periodicity influenza. 

摘      要:Influenza H1N1 has been found to exhibit oscillatory levels of incidence in large pop- ulations. Clear peaks for influenza H1N1 are observed in several countries including Vietnam each year [M. F. Boni, B. H. Manh, P. Q. Thai, J. Farrar, T. Hien, N. T. Hien, N. Van Kinh and P. Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, BMC Med. 7 (2009) 43, Doi: 10.1186/1741-7015-%43]. So it is important to study seasonal forces and factors which can affect the transmission of this disease. This paper studies an SIRS epidemic model with seasonal vaccination rate. This SIRS model has a unique disease-free solution (DFS). The value Ro, the basic reproduction number is obtained when the vaccination is a periodic function. Stability results for the DFS are obtained when R0 〈 1. The disease persists in the population and remains endemic if R0 〉 1. Also when R0 〉 1 existence of a nonzero periodic solution is proved. These results obtained for our model when the vaccination strategy is a non-constant time-dependent function.

读者评论 与其他读者分享你的观点