A direct product decomposition of QMV algebras
A direct product decomposition of QMV algebras作者机构:Institute of Mathematics Academy of Mathematics and Systems Science Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2012年第55卷第4期
页 面:841-850页
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 07[理学] 070205[理学-凝聚态物理] 08[工学] 070104[理学-应用数学] 0701[理学-数学] 0702[理学-物理学]
基 金:supported by National Natural Science Foundation of China (Grant Nos. 60736011, 61073023 and 60603002) the National Basic Research Program of China (973 Program) (Grant No. 2009CB320701)
主 题:QMV algebra commutativity idempotent decomposition theorem
摘 要:We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices).In detail,for an idempo- tent element of a given QMV algebra,if it commutes with every element of the QMV algebra,it can induce a direct product decomposition of the QMV *** the same time,we introduce the commutant C(S) of a set S in a QMV algebra,and prove that when S consists of idempotent elements,C(S) is a subalgebra of the QMV *** also generalizes the cases of orthomodular lattices.