基于支持向量机的供应链伙伴企业选择方法的研究
Research of partner enterprise selection in supply chain management based on support vector machine作者机构:同济大学CIMS研究中心信控系上海200092
出 版 物:《计算机集成制造系统》 (Computer Integrated Manufacturing Systems)
年 卷 期:2004年第10卷第7期
页 面:796-800页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:为了克服传统的机器学习方法在供应链管理领域应用存在的局限性,介绍了一种新的支持向量机的机器学习算法。以企业为背景,运用支持向量机算法来解决多类分类问题和函数回归问题。通过在某企业供应链伙伴选择中的实际应用,并与用神经元网络训练得出的结果进行对比,证明这种支持向量机的机器学习算法,不仅具有较高的训练效率,而且有更高的精确度。