咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Investigation of biomass surfa... 收藏

Investigation of biomass surface modification using non-thermal plasma treatment

Investigation of biomass surface modification using non-thermal plasma treatment

作     者:Mooktzeng LIM Ahmad Zulazlan Shah ZULKIFLI 林木森;Ahmad Zulazlan Shah ZULKIFLI

作者机构:TNB Research Sdn.Bhd.Research Institution Area43000 KajangSelangorMalaysi 

出 版 物:《Plasma Science and Technology》 (等离子体科学和技术(英文版))

年 卷 期:2018年第20卷第11期

页      面:101-107页

核心收录:

学科分类:080703[工学-动力机械及工程] 08[工学] 0807[工学-动力工程及工程热物理] 

基  金:Tenaga Nasional Berhad (Malaysia) for funding this research (TNBR/SF 240/2016) 

主  题:biomass surface modification empty fruit bunch low temperature plasma lignin components syringyl 

摘      要:The effects of non-thermal plasma (NTP) treatment on biomass in the form of pulverized palmbased empty fruit bunches (EFB) are investigated. Specifically, this study investigates the effects of NTP treatment on the surface reactivity, morphology, oxygen-to-carbon (O/C) ratio of the EFB at varying treatment times. The surface reactivity is determined by the reaction of antioxidant functional groups or reactive species with 2,2-diphenyl-l-picrylhydrazyl (DPPH). By measuring the concentration of the DPPH with a spectrophotometer, the change in the amount of antioxidant functional groups can be measured to determine the surface reactivity. The reactions of the various lignin components in the EFB with respect to the NTP treatment are discussed by qualitatively assessing the changes in the Fourier transform infrared (FTIR) spectra. The surface morphology is examined by a scanning electron microscope. To determine the amount of oxygen deposited on the EFB by the air-based NTP treatment, the oxygen and carbon contents are measured by an energy dispersive x-ray detector to determine the O/C ratio. The results show that the NTP reactor produced reactive species such as atomic oxygen and ozone, increasing the surface reactivity and chemical scavenging rate of the EFB. Consequently, the surface morphology changed, with an observed rougher surface from the images of the EFB samples. The change in the appearance of the surface is accompanied by a high O/C ratio, and is caused by reactions of certain components of lignin due to the NTP treatment, The lignin component that was modified is believed to be syringyl, as the syringyl portion in the lignin of EFBs is higher compared to the other components. Syringyl components are detected in the range of F-FIR wavenumbers of 1109-1363 cm-1. With increasing NTP treatment times, the absorbance (of the peaks in the PTIR spectra) for syringyl related C-H and lignin associated C=C bonds decreases as the syringyl decomposes. The resulting re

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分