OSCILLATORY BEHAVIOR OF SOLUTIONS OF CERTAIN THIRD ORDER MIXED NEUTRAL DIFFERENCE EQUATIONS
OSCILLATORY BEHAVIOR OF SOLUTIONS OF CERTAIN THIRD ORDER MIXED NEUTRAL DIFFERENCE EQUATIONS作者机构:Ramanujan Institute for Advanced Study in MathematicsUniversity of MadrasChennai 600 005India
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2013年第33卷第1期
页 面:218-226页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 0805[工学-材料科学与工程(可授工学、理学学位)] 070102[理学-计算数学] 0703[理学-化学] 0704[理学-天文学] 070301[理学-无机化学] 0701[理学-数学]
主 题:oscillation third order mixed type neutral difference equation
摘 要:The objective of this paper is to study the oscillatory and asymptotic properties of the mixed type third order neutral difference equation of the form △(an△^2(xn+bnxn-τ1+cnxn+τ2))+qnx^βn+1-σ1+pnx^^βn+1+σ2=0, where (an), (bn}, (cn}, (qn} and (pn} are positive real sequences, β is a ratio of odd positive integers, τ1, τ2, and σ2 are positive integers. We establish some sufficient conditions which ensure that all solutions are either oscillatory or converges to zero. Some examples are presented to illustrate the main results.