ON THE CROSSING NUMBER OF THE COMPLETE TRIPARTITE GRAPH K1,8,n
ON THE CROSSING NUMBER OF THE COMPLETE TRIPARTITE GRAPH K1,8,n作者机构:Department of Mathematics Hunan Normal University Changsha 410081 China
出 版 物:《数学物理学报》 (Acta Mathematica Scientia)
年 卷 期:2006年第S1期
页 面:1115-1122页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Graphs Drawing Crossing number Complete tripartite graph Complete tripartite graph.
摘 要:The well known Zarankiewicz’ conjecture is said that the crossing number of the complete bipartite graph Km,n (m≤n) is Z(m,n). where Z(m,n) = [m/2] [(m-1)/2] [n/2] [(n-1)/2](for and real number x, [x] denotes the maximal integer no more than x). Presently, Zarankiewicz’ conjecture is proved true only for the case m≤G. In this article, the authors prove that if Zarankiewicz’ conjecture holds for m≤9, then the crossing number of the complete tripartite graph K1,8,n is Z(9, n) + 12[n/2].