咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >CuSO_4 -CATALYZED SELF-INITIAT... 收藏

CuSO_4 -CATALYZED SELF-INITIATED RADICAL POLYMERIZATION OF 2-(N,N- DIMETHYLAMINO)ETHYL METHACRYLATE AS AN INTRINSICALLY REDUCING INIMER

CuSO_4 -CATALYZED SELF-INITIATED RADICAL POLYMERIZATION OF 2-(N,N- DIMETHYLAMINO)ETHYL METHACRYLATE AS AN INTRINSICALLY REDUCING INIMER

作     者:Yan Sun 翟光群 

作者机构:Department of Materials Science and Engineering Changzhou University 

出 版 物:《Chinese Journal of Polymer Science》 (高分子科学(英文版))

年 卷 期:2013年第31卷第8期

页      面:1161-1172页

核心收录:

学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070305[理学-高分子化学与物理] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 

基  金:financially supported by the National Natural Science Foundation of China(No.20674033) Natural Science Foundation of Jiangsu Province(No.BK2008142) Scientific Research Foundation for the Returned Overseas Chinese Scholars(State Education Ministry) 

主  题:2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) Cu2+-tertiary amine redox initiation Catalystregeneration Intrinsically reducing inimer Self-initiated radical polymerization. 

摘      要:Since tertiary amines (Cα-H) can be oxidized by peroxides and transition metal cations in high oxidation states into Ca2+ radicals to initiate vinylic polymerizations of methacrylates, Cu2+ and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) form a polymerizable redox initiating pair, in which DMAEMA serves as an intrinsically reducing inimer. CuSOa-catalyzed aqueous self-initiated radical polymerizations of DMAEMA were successfully performed at ambient temperature via a continuous Cu2+-tertiary amine redox initiation based on catalyst regeneration in the presence of O2. The polymerization kinetics was monitored by gas chromatography and the structure of PDMAEMA was characterized by gel- permeation chromatography, nuclear magnetic resonance spectroscopy, laser light scattering and online intrinsic-viscosity analysis. Both the monomer conversion and the molecular weight of PDMAEMA increase with the reaction while the molecular weight distribution maintains rather broad, as the Cu2+-DMAEMA redox-initiation leads to linear PDMAEMA chains with terminal methacryloxyl moieties, and the Cu2+-PDMAEMA redox-initiation results in branched chains. The branched topology forms and develops only for the high-MW components of the PDMAEMA. Our results provide a facile strategy to prepare branched polymers from such commercially available intrinsically reducing inimers using a negligible concentration of regenerative air-stable catalysts.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分