咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >The Asymptotic Behavior of Che... 收藏

The Asymptotic Behavior of Chern-Simons Higgs Model on a Compact Riemann Surface with Boundary

The Asymptotic Behavior of Chern-Simons Higgs Model on a Compact Riemann Surface with Boundary

作     者:Meng WANG 

作者机构:Department of MathematicsZhejiang UniversityHangzhou 310027P.R.China 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2012年第28卷第1期

页      面:145-170页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by National Natural Science Foundation of China (Grant Nos.10701064,10931001) XINXING Project of Zhejiang University 

主  题:Riemann surface,. Neumann condition Chern-Simons Higgs model Green function Kazdan-Warner equation 

摘      要:We study the self-dual Chern-Simons Higgs equation on a compact Riemann surface with the Neumann boundary condition. In the previous paper, we show that the Chern-Simons Higgs equation with parameter A 〉 0 has at least two solutions (uλ^-, uλ^2) for A sufficiently large, which satisfy that uλ^1 - -u0 almost everywhere as λ →∞, and that uλ^2 →-∞ almost everywhere as λ→∞, where u0 is a (negative) Green function on M. In this paper, we study the asymptotic behavior of the solutions as λ →∞, and prove that uλ^2 - uλ^2- converges to a solution of the Kazdan-Warner equation if the geodesic curvature of the boundary OM is negative, or the geodesic curvature is nonpositive and the Gauss curvature is negative where the geodesic curvature is zero.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分