咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Convergence of an adaptive mix... 收藏

Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations

Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations

作     者:DU ShaoHong XIE XiaoPing 

作者机构:School of Science Chongqing Jiaotong University Beijing Computational Science Research Center School of Mathematics Sichuan University 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2015年第58卷第6期

页      面:1327-1348页

核心收录:

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

基  金:supported by Education Science Foundation of Chongqing(Grant No.KJ120420) National Natural Science Foundation of China(Grant No.11171239) Major Research Plan of National Natural Science Foundation of China(Grant No.91430105) Open Fund of Key Laboratory of Mountain Hazards and Earth Surface Processes,Chinese Academy Sciences 

主  题:convection instead posteriori marking meshes projection interpolation holds interior satisfy 

摘      要:We prove the convergence of an adaptive mixed finite element method(AMFEM) for(nonsymmetric) convection-diffusion-reaction equations. The convergence result holds for the cases where convection or reaction is not present in convection- or reaction-dominated problems. A novel technique of analysis is developed by using the superconvergence of the scalar displacement variable instead of the quasi-orthogonality for the stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分