咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >RADIAL SYMMETRY FOR SYSTEMS OF... 收藏

RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN

RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN

作     者:Congming LI Zhigang WU 李从明;吴志刚

作者机构:School of Mathematical Sciences Shanghai Jiao Tong University Shanghai 200240 China Department of Applied Mathematics University of Colorado Boulder USA Department of Applied Mathematics Donghua University Shanghai 201620 China 

出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))

年 卷 期:2018年第38卷第5期

页      面:1567-1582页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0704[理学-天文学] 0701[理学-数学] 

基  金:Partially supported by NSFC(11571233) NSF DMS-1405175 NSF of Shanghai16ZR1402100 China Scholarship Council 

主  题:system of fractional Laplacian method of moving planes maximum principles with singular point Kelvin transform 

摘      要:In this paper, we consider systems of fractional Laplacian equations in ]I^n with nonlinear terms satisfying some quite general structural conditions. These systems were categorized critical and subcritical cases. We show that there is no positive solution in the subcritical cases, and we classify all positive solutions ui in the critical cases by using a direct method of moving planes introduced in Chen-Li-Li [11] and some new maximum principles in Li-Wu-Xu [27].

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分