RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN
RADIAL SYMMETRY FOR SYSTEMS OF FRACTIONAL LAPLACIAN作者机构:School of Mathematical Sciences Shanghai Jiao Tong University Shanghai 200240 China Department of Applied Mathematics University of Colorado Boulder USA Department of Applied Mathematics Donghua University Shanghai 201620 China
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2018年第38卷第5期
页 面:1567-1582页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0704[理学-天文学] 0701[理学-数学]
基 金:Partially supported by NSFC(11571233) NSF DMS-1405175 NSF of Shanghai16ZR1402100 China Scholarship Council
主 题:system of fractional Laplacian method of moving planes maximum principles with singular point Kelvin transform
摘 要:In this paper, we consider systems of fractional Laplacian equations in ]I^n with nonlinear terms satisfying some quite general structural conditions. These systems were categorized critical and subcritical cases. We show that there is no positive solution in the subcritical cases, and we classify all positive solutions ui in the critical cases by using a direct method of moving planes introduced in Chen-Li-Li [11] and some new maximum principles in Li-Wu-Xu [27].