Dissolution-regrowth synthesis of SiO_2 nanoplates and embedment into two carbon shells for enhanced lithium-ion storage
Dissolution-regrowth synthesis of SiO_2 nanoplates and embedment into two carbon shells for enhanced lithium-ion storage作者机构:State Key Laboratory of Fine Chemicals Chemical Engineering Department Dalian University of Technology
出 版 物:《Chinese Journal of Chemical Engineering》 (中国化学工程学报(英文版))
年 卷 期:2018年第26卷第7期
页 面:1522-1527页
核心收录:
学科分类:0808[工学-电气工程] 07[理学] 070205[理学-凝聚态物理] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学]
基 金:Supported by the National Science Funding for Distinguished Young Scholars of China(21125628) National Natural Science Foundation of China(21476044) the Fundamental Research Funds for the Central Universities(DUT15QY08)
主 题:Silica nanoplates Carbon shell Macroporous Lithium-ion battery
摘 要:In this work, SiO2 nanoplates with opened macroporous structure on carbon layer (C-mSiO2) have been obtained by dissolving and subsequent ingrowing the outer solid SiO2 layer of the aerosol-based C-SiO2 double-shell hollow spheres. Subsequently, triple-shell C-mSiO2-C hollow spheres were successfully prepared after coating the C- mSiO2 templates by the carbon layer from the carbonization of sucrose. When being applied as the anode material fur lithium-ion batteries, the C-mSiO2-C triple-shell hollow spheres deliver a high capacity of 501 mA. h.g- 1 after 100 cycles at 500 mA.g-1 (based on the total mass of silica and the two carbon shells), which is higher than those of C-mSiO2 (391 mA.h.g 1) spheres with an outer porous SiO2 layer, C-SiO2-C (370 mA-h.g-1) hollow spheres with a middle solid Si02 layer, and C-SiO2 (319.8 mA·h-g-1) spheres with an outer solid SiO2 layer. In addition, the battery still delivers a high capacity of 403 mA· h· g- 1 at a current density of 1000 mA· g- 1 after 400 cycles. The good electrochemical performance can be attributed to the high surface area (246.7 m2·g- 1 ) and pore volume (0.441 cm3· g-1) of the anode materials, as well as the unique structure of the outer and inner carbon layer which not only enhances electrical conductivity, structural stability, but buffers volume change of the intermediate SiO2 layer during repeated charge-discharge processes. Furthermore, the SiO2 nanoplates with opened macroporous structure facilitate the electrolyte transport and electrochemical reaction.