咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Genetic variation of wood trac... 收藏

Genetic variation of wood tracheid traits and their relationships with growth and wood density in clones of Pinus tabuliformis

Genetic variation of wood tracheid traits and their relationships with growth and wood density in clones of Pinus tabuliformis

作     者:Fangqun Ouyang Jianwei Ma Sanping An Junhui Wang Yuhui Weng 

作者机构:State Key Laboratory of Tree Genetics and Breeding Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration Research Institute of Forestry Chinese Academy of Forestry Beijing 100083 People's Republic of China Research Institute of Forestry of Xiaolong Mountain Tianshui 741020 Gansu People's Republic of China Arthur Temple College of Forestry and Agriculture Stephen F. Austin State University Nacogdoches TX 75962 USA 

出 版 物:《Journal of Forestry Research》 (林业研究(英文版))

年 卷 期:2018年第29卷第4期

页      面:1014-1023页

核心收录:

学科分类:0830[工学-环境科学与工程(可授工学、理学、农学学位)] 0907[农学-林学] 08[工学] 0829[工学-林业工程] 0901[农学-作物学] 

基  金:supported by “Open Fund of State Key Laboratory of Tree Genetics and Breeding(Chinese Academy of Forestry)(Grant No.TGB2016001)” “The Lecture and Study Program for Outstanding Scholars from Home and Abroad(Grant No.CAFYBB2011007)” “Continuation project of National Natural Science Foundation of China(Grant No.CAFNSFC201601)” 

主  题:Pinus tabuliformis Clone Tracheid traits Wood density Genetic variation Correlation coefficient 

摘      要:To improve wood quality for pulpwood industries, it is important to examine not only wood density but also its components, especially tracheid characteristics. We studied genetic variations in the following tracheid traits by earlywood (EW) and latewood (LW): tracheid length (TL), double wall thickness (WT), radial lumen diameter (R_D1), tangential lumen diameter (T_D1), radial central diameter (R_D2), and tangential central diameter (T_D2). We also studied the relationship with the following growth traits: diameter at breast height (DBH), height (H), crown breadth south-north axis (NSC), crown breadth east-west axis (EWC), ring width (RW), latewood percentage (LWP), and wood density (WD). All sample materials were collected from a 33-year old clonal seed orchard of Pinus tabuliformis Carr. Genetic variation among clones was moderate for all tracheid traits, 9.49-26.03%. Clones significantly affected WT, R_D1, R_D2, T_D1, T_D2, and the two ratios WT/R_D1 and TL/T_D2 in EW but had no effects in LW. Clones significantly affected TL in LW but had no effects in EW. H2/C was higher in LW (0.50) than in EW (0.20) for TL, while H 2/C was higher in EW (0.27-0.46) for other tracheid traits and the two ratios (TL/T_D2 and WT/R_D1) than in EW (0.06-0.22). WD and TL were significantly positively correlated, but WT and TL were negatively correlated both at individual and clone levels; all tracheid diameters and the four ratio values (EW_WT/ R_D1, LW WT/R_D1, EW_TL/T_D2 and LW_TL/ T_D2), were strongly positively correlated with DBH, H, NSC, WEC and RW, and strongly negatively correlated with WD both at individual and clone levels. The most important variables for predicting WD were LW_TL, EW_WT and R_D1 in both EW and LW (r2= 0.22). Selecting the top 10% of the clones by DBH would improve DBH growth by 12.19% (wood density was reduced by 0.14%) and produced similar responses between EW and LW for all tracheid traits: a reduction of 0.94 and 3.69% in tracheid length and increases in tracheid diameters (from 0.36 to 5.24%) and double wall thickness (0.07 and 0.87%). The two ratios WT/R_D1 and TL/T_D2 across tissues (EW and LW) declined 0.59 and 4.56%, respectively. The decreased tracheid length and the ratio between tracheid length and diameter is disadvantageous for pulp production. The unfavorable relationship of tracheid traits with wood density indicate that multiple trait selection using optimal economic weights and optimal breeding strategies are recommended for the current longterm breeding program for P. tabuliformis.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分