咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A Common Generalization to The... 收藏

A Common Generalization to Theorems on Set Systems with L-intersections

A Common Generalization to Theorems on Set Systems with L-intersections

作     者:Jiu Qiang LIU Sheng Gui ZHANG Ji Meng XIAO 

作者机构:School of Management Engineering Xi'an University of Finance and Economics Xi'an 710100 P. R. China Department of Mathematics Eastern Michigan University Ypsilanti MI 48197 USA Department of Mathematics Northwestern Polytechnical University Xi'an 710072 P. R. China 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2018年第34卷第7期

页      面:1087-1100页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:Alon-Babai-Suzuki Theorem Erdos-Ko-Rado Theorem Frankl-Wilson Theorem Snevily Theorem multilinear polynomials 

摘      要:In this paper, we provide a common generalization to the well-known Erdos-Ko-Rado Theorem, Frankl-Wilson Theorem, Alon-Babai-Suzuki Theorem, and Snevily Theorem on set systems with L-intersections. As a consequence, we derive a result which strengthens substantially the well- known theorem on set systems with k-wise E-intersections by Furedi and Sudakov [J. Combin. Theory, Set. A, 105, 143-159 (2004)]. We will also derive similar results on E-intersecting families of subspaces of an n-dimensional vector space over a finite field Fq, where q is a prime power.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分