Bifurcations and Single Peak Solitary Wave Solutions of an Integrable NonlinearWave Equation
作者机构:School of Mathematics and Computing ScienceGuilin University of Electronic TechnologyJinji Road No.1Guilin 541004China
出 版 物:《Advances in Applied Mathematics and Mechanics》 (应用数学与力学进展(英文))
年 卷 期:2016年第8卷第6期
页 面:1084-1098页
核心收录:
学科分类:07[理学] 0802[工学-机械工程] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)] 070101[理学-基础数学]
基 金:supported by the National Natural Science Foundation of China(No.11361017) Science Foundation of the Education Office of Guangxi Province(No.KY2015ZD043,Guangxi Natural Science Foundation(No.2014GXNSFBA118007,No.2014GXNSFBA118017 and No.2015GXNSFGA139004) Program for Innovative Research Team of Guilin University of Electronic Technology,Project of Outstanding Young Teachers’Training in Higher Education Institutions of Guangxi and Innovation Project of GUET Graduate Education(Nos.YJCXS201557)
主 题:Bifurcation solitary wave compaction
摘 要:Dynamical system theory is applied to the integrable nonlinear wave equation ut±(u^(3)−u^(2))x+(u^(3))xxx=*** obtain the single peak solitary wave solutions and compacton solutions of the *** compacton solution of the equation correspond to the case of wave speed c=*** the case of c 6=0,we find smooth soliton *** influence of parameters of the traveling wave solutions is explored by using the phase portrait analytical *** analysis and numerical simulations are provided for these soliton solutions of the nonlinear wave equation.