Variable Coefficient KdV Equation for Amplitude of Nonlinear Solitary Rossby Waves in a Sort of Time-Dependent Zonal Flow
Variable Coefficient KdV Equation for Amplitude of Nonlinear Solitary Rossby Waves in a Sort of Time-Dependent Zonal Flow作者机构:College of Atmospheric Sciences Lanzhou University Lanzhou 730000 China School of Mathematics and Computer Science Institute Northwest University for Nationalities Lanahou 730124 China College of Science Inner Mongolia University of Technology Hohhot 010062 China School of Mathematical Sciences Inner Mongolia University Hohhot 010021 China)
出 版 物:《高原气象》 (Plateau Meteorology)
年 卷 期:2011年第30卷第2期
页 面:349-354页
核心收录:
学科分类:07[理学] 070601[理学-气象学] 0706[理学-大气科学]
基 金:supported by the Meteorological Special Project of China(GYHY200806005) the National Natural Sciences Foundation of China(40805028,40675039,40575036) the Key Technologies R&D Program of China(2009BAC51B04)
主 题:Nonlinear Rossby Waves Variable coefficient KdV equation Time-dependent zonal flow Perturbation method
摘 要:On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.