Partition method and experimental validation for impact dynamics of flexible multibody system
Partition method and experimental validation for impact dynamics of flexible multibody system作者机构:School of Naval Architecture Ocean and Civil EngineeringShanghai Jiao Tong University
出 版 物:《Acta Mechanica Sinica》 (力学学报(英文版))
年 卷 期:2018年第34卷第3期
页 面:482-492页
核心收录:
学科分类:08[工学] 080101[工学-一般力学与力学基础] 0801[工学-力学(可授工学、理学学位)]
基 金:supported by the National Natural Science Foundation of China (Grants 11772188 11132007)
主 题:Partition method Impact dynamics Experimental investigation Efficiency and accuracy Partition principle
摘 要:The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effec-rive formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.