Error Estimates ofMixedMethods forOptimal Control Problems Governed by General Elliptic Equations
作者机构:School of Mathematics and StatisticsBeihua UniversityJilin 132013China Key Laboratory for Nonlinear Science and System StructureSchool of Mathematics and StatisticsChongqing Three Gorges UniversityWanzhou 404100China
出 版 物:《Advances in Applied Mathematics and Mechanics》 (应用数学与力学进展(英文))
年 卷 期:2016年第8卷第6期
页 面:1050-1071页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by National Natural Science Foundation of China(Grant No.11526036) Scientific and Technological Developing Scheme of Jilin Province(Grant No.20160520108JH)
主 题:General elliptic equations optimal control problems superconvergence error estimates,mixed finite element methods
摘 要:In this paper,we investigate the error estimates of mixed finite element methods for optimal control problems governed by general elliptic *** state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant *** derive L2 and H−1-error estimates both for the control variable and the state ***,a numerical example is given to demonstrate the theoretical results.