Sanguinarine Attenuates Lipopolysaccharide-induced Inflammation and Apoptosis by Inhibiting the TLR4/NF-KB Pathway in H9c2 Cardiomyocytes
Sanguinarine Attenuates Lipopolysaccharide-induced Inflammation and Apoptosis by Inhibiting the TLR4/NF-KB Pathway in H9c2 Cardiomyocytes作者机构:Department of Cardiology Renmin Hospital of Wuhan University Wuhan 430060 China Cardiovascular Research Institute Wuhan University Wuhan 430060 China Hubei Key Laboratory of Cardiology Wuhan 430060 China
出 版 物:《Current Medical Science》 (当代医学科学(英文))
年 卷 期:2018年第38卷第2期
页 面:204-211页
核心收录:
学科分类:0710[理学-生物学] 1001[医学-基础医学(可授医学、理学学位)] 0703[理学-化学] 10[医学]
基 金:Hubei Province’s Outstanding Medical Academic Leader program
主 题:lipopolysaccharides sanguinarine inflammation H9c2 cardiac cells apoptosis
摘 要:The inflammatory response is involved in the pathogenesis of the most common types of heart disease. Sanguinarine (SAN) has various pharmacological properties such as anti-inflammatory, antioxidant, antibacterial, antitumor, and immune-enhancing properties. However, few studies have investigated the effects of SAN on lipopolysaceharide (LPS)-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes. Therefore, in this study, H9c2 cells were co-treated with SAN and LPS, and the mRNA levels of pro-inflammation markers and the apoptosis rate were measured to clarify the effect of SAN on cardiac inflammation. The underlying mechanism was further investigated by detecting the activation of Toll-like receptor (TLR)4/nuclear faetor-κB (NF-κB) signaling pathways. As a result, increased mRNA expression of interleukin (IL)-1β, IL-6, and TNFα induced by LPS was attenuated after SAN treatment; LPS-induced apoptosis ofHge2 cardiomyocytes and cleaved-caspase 8, 9, 3 were all significantly reduced by SAN. Further experiments showed that the beneficial effect of SAN on blocking the inflammation and apoptosis of H9c2 cardiomyocytes induced by LPS was associated with suppression of the TLR4/NF-κB signaling pathway. It was suggested that SAN suppressed the LPS-induced inflammation and apoptosis of H9c2 cardiomyocytes, which may be mediated by inhibition of the TLR4/NF-κB signaling pathway. Thus, SAN may be a feasible therapy to treat sepsis patients with cardiac dysfunction.