Numerical Integration over Pyramids
在金字塔数值积分作者机构:Institute of Computer ScienceHunan Normal UniversityChangsha 410081HunanChina Institute of MathematicsAcademy of SciencesCZ-11567 PragueCzech Republic Department of Mathematical SciencesLakehead UniversityThunder BayONP7B 5E1Canada Department of Applied MathematicsAnhui Agricultural UniversityHefei230036AnhuiChina
出 版 物:《Advances in Applied Mathematics and Mechanics》 (应用数学与力学进展(英文))
年 卷 期:2013年第5卷第3期
页 面:309-320页
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
基 金:This paper was supported by The National Natural Science Foundation of China(No.10771063) Key Laboratory ofHigh performance Computation and Stochastic Information Processing,Hunan Province and Ministry of Education,Institutional Research Plan No.AV0Z 10190503,Anhui Agricultural University(yj2012-03) Grant No.IAA 100190803 of the Academy of Sciences of the Czech Republic and The Natural Sciences and Engineering Research Council of Canada.The authors are indebted to Pavel Krızek and Kevin B.Davies for their help in preparation of Figs.1 and 2,and Jan Brandts for fruitful discussions
主 题:Reference pyramidal element nonlinear systems of algebraic equations Bramble-Hilbert lemma triangular tetrahedral and pyramidal numbers
摘 要:Pyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element *** this paper we derive three new higher order numerical cubature formulae for pyramidal elements.