咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Explicit Formulae for Values o... 收藏

Explicit Formulae for Values of Dedekind Zeta Functions of Two Kinds of Cyclotomic Fields

Explicit Formulae for Values of Dedekind Zeta Functions of Two Kinds of Cyclotomic Fields

作     者:马连荣 张贤科 

作者机构:Dept. of Math. Sciences Tsinghua Univ. 北京 100084 

出 版 物:《数学进展》 (Advances in Mathematics(China))

年 卷 期:2002年第31卷第1期

页      面:90-92页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Project supported by the National Natural Science Foundation of hina (No. 10071041) 

主  题:Dedekindζ函数  显式公式 Zeta函数 割圆域 

摘      要:Let K = Q(ζ_m) denote the m-th cyclotomic field, and K~+ its maximal real subfield, where ζ_m = exp(2πi/m) is an m-th primary root of unity. Let ζ_K(s) denote the Dedekind zeta function of K. For prime integers m = p, Fumio Hazama recently in [1] obtained formulae for calculating special values of ζ_K(s) and ζ_K + (s), i.e., calculating formulae of ζ_K + (1 - n) and ζ_K(1-n)/ζ_K + (1 - n) for positive integers n, which are the newest results of a series of his work in many years (see [1-3]).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分