Explicit Formulae for Values of Dedekind Zeta Functions of Two Kinds of Cyclotomic Fields
Explicit Formulae for Values of Dedekind Zeta Functions of Two Kinds of Cyclotomic Fields作者机构:Dept. of Math. Sciences Tsinghua Univ. 北京 100084
出 版 物:《数学进展》 (Advances in Mathematics(China))
年 卷 期:2002年第31卷第1期
页 面:90-92页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Project supported by the National Natural Science Foundation of hina (No. 10071041)
主 题:Dedekindζ函数 值 显式公式 Zeta函数 割圆域
摘 要:Let K = Q(ζ_m) denote the m-th cyclotomic field, and K~+ its maximal real subfield, where ζ_m = exp(2πi/m) is an m-th primary root of unity. Let ζ_K(s) denote the Dedekind zeta function of K. For prime integers m = p, Fumio Hazama recently in [1] obtained formulae for calculating special values of ζ_K(s) and ζ_K + (s), i.e., calculating formulae of ζ_K + (1 - n) and ζ_K(1-n)/ζ_K + (1 - n) for positive integers n, which are the newest results of a series of his work in many years (see [1-3]).