Geometric simplicity of spectral radius of nonnegative irreducible tensors
Geometric simplicity of spectral radius of nonnegative irreducible tensors作者机构:School of Mathematical Sciences and LPMC Nankai University Tianjin 300071 China
出 版 物:《Frontiers of Mathematics in China》 (中国高等学校学术文摘·数学(英文))
年 卷 期:2013年第8卷第1期
页 面:129-140页
核心收录:
学科分类:07[理学] 08[工学] 080104[工学-工程力学] 0701[理学-数学] 070101[理学-基础数学] 0801[工学-力学(可授工学、理学学位)]
基 金:国家自然科学基金 the Academic Scholarship for Doctoral Candidates, Ministry of Education of China 国家教育部留学回国人员科研启动基金
主 题:Nonnegative irreducible tensor Perron-Frobenius theorem,geometrically simple
摘 要:We study irreducible tensors. the real and complex geometric simplicity of nonnegative First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an even- order nonnegative irreducible tensor is proved. For an odd-order nonnegative irreducible tensor, sufficient conditions are investigated to ensure the spectral radius to be real geometrically simple. Furthermore, the complex geometric simplicity of nonnegative irreducible tensors is also studied.