Adaptive neural control for pure-feedback nonlinear time-delay systems with unknown dead-zone: a Lyapunov-Razumikhin method
Adaptive neural control for pure-feedback nonlinear time-delay systems with unknown dead-zone: a Lyapunov-Razumikhin method作者机构:Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education East China University of Science and Technology
出 版 物:《控制理论与应用(英文版)》 (Journal of Control Theory and Applications)
年 卷 期:2013年第11卷第1期
页 面:18-26页
核心收录:
学科分类:0711[理学-系统科学] 080801[工学-电机与电器] 0808[工学-电气工程] 07[理学] 08[工学] 0835[工学-软件工程] 0802[工学-机械工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 071102[理学-系统分析与集成] 081103[工学-系统工程]
基 金:supported by the National Natural Science Foundation of China (No. 60974066) the Natural Science Foundation of Shanghai (Nos.12ZR1408200, 11ZR1409800) the Fundamental Research Funds for the Central Universities
主 题:Pure-feedback nonlinear systems Adaptive neural control Razumikhin functional Time-delay Deadzone
摘 要:This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.