咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cubic vertex-transitive non-Ca... 收藏

Cubic vertex-transitive non-Cayley graphs of order 12p

Cubic vertex-transitive non-Cayley graphs of order 12p

作     者:Wei-Juan Zhang Yan-Quan Feng Jin-Xin Zhou 

作者机构:Department of Mathematics Beijing Jiaotong University Beijing 100044 China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2018年第61卷第6期

页      面:1153-1162页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:supported by National Natural Science Foundation of China(Grant Nos.11671030,11171020 and 11231008) the Fundamental Research Funds for the Central Universities(Grant No.2015JBM110) 

主  题:Cayley graphs vertex-transitive graphs automorphism groups 

摘      要:A graph is said to be vertex-transitive non-Cayley if its full automorphism group acts transitively on its vertices and contains no subgroups acting regularly on its vertices. In this paper, a complete classification of cubic vertex-transitive non-Cayley graphs of order 12 p, where p is a prime, is given. As a result, there are 11 sporadic and one infinite family of such graphs, of which the sporadic ones occur when p equals 5, 7 or 17, and the infinite family exists if and only if p ≡ 1(mod 4), and in this family there is a unique graph for a given order.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分