咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Master equation and runaway sp... 收藏

Master equation and runaway speed of the Francis turbine

Master equation and runaway speed of the Francis turbine

作     者:Zh.Zhang 

作者机构:Free Researcher Zurich Switzerland 

出 版 物:《Journal of Hydrodynamics》 (水动力学研究与进展B辑(英文版))

年 卷 期:2018年第30卷第2期

页      面:203-217页

核心收录:

学科分类:080703[工学-动力机械及工程] 08[工学] 0807[工学-动力工程及工程热物理] 

主  题:Francis turbine master equation runaway speed hydraulic efficiency shock loss swirling loss streamline similarity method 

摘      要:The master equation of the Francis turbine is derived based on the combination of the angular momentum(Euler) and the energy laws. It relates the geometrical design of the impeller and the regulation settings(guide vane angle and rotational speed) to the discharge and the power output. The master equation, thus, enables the complete characteristics of a given Francis turbine to be easily computed. While applying the energy law, both the shock loss at the impeller inlet and the swirling loss at the impeller exit are taken into account. These are main losses which occur at both the partial load and the overloads and, thus, dominantly influence the characteristics of the Francis turbine. They also totally govern the discharge of the water through the impeller when the impeller is found in the standstill. The computations have been performed for the discharge, the hydraulic torque and the hydraulic efficiency. They were also compared with the available measurements on a model turbine. Excellent agreement has been achieved. The computations also enable the runaway speed of the Francis turbine and the related discharge to be determined as a function of the setting angle of the guide vanes.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分