GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION
GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION作者机构:School of Mathematical SciencesZhejiang Universit Department of Applied MathematicsCollege of ScienceZhongyuan University of Technolog
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2018年第38卷第3期
页 面:745-755页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported in part by the NNSF of China(11271323,91330105) the Zhejiang Provincial Natural Science Foundation of China(LZ13A010002) the Science Foundation in Higher Education of Henan(18A110036)
主 题:Hyperbolic geometry flow time-dependent damping classical solution energy method global existence
摘 要:In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ ≤ 1, μ 〉 λ + 1, we show that there exists a global solution gij to the hyperbolic geometry flow with time-dependent dissipation with asymptotic flat initial Riemann surfaces. Moreover, we prove that the scalar curvature R(t, x) of the solution metric gij remains uniformly bounded.