咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Analysis of a Shil’nikov Type ... 收藏

Analysis of a Shil’nikov Type Homoclinic Bifurcation

Analysis of a Shil’nikov Type Homoclinic Bifurcation

作     者:Yan Cong XU Xing Bo LIU 

作者机构:Department of Mathematics Hangzhou Normal University Hangzhou 310036 P. R. China Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University Shanghai 200241 P. R. China 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2018年第34卷第5期

页      面:901-910页

核心收录:

学科分类:0711[理学-系统科学] 07[理学] 070104[理学-应用数学] 071101[理学-系统理论] 0701[理学-数学] 

基  金:Supported by National NSF(Grant Nos.11371140,11671114) Shanghai Key Laboratory of PMMP 

主  题:Homoclinic bifurcation Hopf bifurcation Poincare map 

摘      要:The bifurcation associated with a homoclinic orbit to saddle-focus including a pair of pure imaginary eigenvalues is investigated by using related homoclinie bifurcation theory. It is proved that, in a neighborhood of the homoclinic bifurcation value, there are countably infinite saddle-node bifurcation values, period-doubling bifurcation values and double-pulse homoclinic bifurcation values. Also, accompanied by the Hopf bifurcation, the existence of certain homoclinie connections to the periodic orbit is proved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分