Analysis of a Shil’nikov Type Homoclinic Bifurcation
Analysis of a Shil’nikov Type Homoclinic Bifurcation作者机构:Department of Mathematics Hangzhou Normal University Hangzhou 310036 P. R. China Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University Shanghai 200241 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2018年第34卷第5期
页 面:901-910页
核心收录:
学科分类:0711[理学-系统科学] 07[理学] 070104[理学-应用数学] 071101[理学-系统理论] 0701[理学-数学]
基 金:Supported by National NSF(Grant Nos.11371140,11671114) Shanghai Key Laboratory of PMMP
主 题:Homoclinic bifurcation Hopf bifurcation Poincare map
摘 要:The bifurcation associated with a homoclinic orbit to saddle-focus including a pair of pure imaginary eigenvalues is investigated by using related homoclinie bifurcation theory. It is proved that, in a neighborhood of the homoclinic bifurcation value, there are countably infinite saddle-node bifurcation values, period-doubling bifurcation values and double-pulse homoclinic bifurcation values. Also, accompanied by the Hopf bifurcation, the existence of certain homoclinie connections to the periodic orbit is proved.