咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Using RBF Neural Network for O... 收藏

Using RBF Neural Network for OptimumControl of a Cold Storage

Using RBF Neural Network for Optimum Control of a Cold Storage

作     者:Shi Guodong Wang Qihong Xu Yan Xue Guoxin 

作者机构:Jiangsu Institution of Petrochemical TechnologyChangzhou 213016 P. R. China 

出 版 物:《Journal of Systems Engineering and Electronics》 (系统工程与电子技术(英文版))

年 卷 期:2000年第11卷第4期

页      面:30-36页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Algorithms Cold storage Functions Interpolation Neural networks Online systems Predictive control systems 

摘      要:In recent years, advanced control technologies have been used for the optimum control of a cold storage. But there are still a lot of shortcomings. One of the main problems is that the traditional methods can t realize the on-line predictive optimum control of a refrigerating system with simple and valid algorithms. An RBF neural network has a strong ability in nonlinear mapping, a good interpolating value performance, and a higher training speed. Thus a two-stage RBF neural network is proposed in this paper. Combining the measured values with the predicted values, the two-stage RBF neural network is used for the on-line predictive optimum control of the cold storage temperature. The application results of the new methods show a great success.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分